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Equating Test Forms Composed of Testlets
Using Dichotomous and Polytomous MT Models

Abstract

Item response models can be applied in many test equating situations by making strong

statistical assumptions. Thus, studying the robustness of the models to violations of the

assumptions and investigating modeldata fit are essential in all IRT equating applications

(Kolen & Brennan, 1995). Previous studies dealing with tests composed of testlets have

indicated that the assumptions of the dichotomous IRT models are frequently violated;

however, passage scores can be used instead of item scores to eliminate the effect of the

dependence among within-passage items (Lee & Frisbie, 1997; Wainer & Thissen, 1996;

Sireci, Thissen, & Wainer, 1991). The purpose of this study was to compare the performance

of polytomous IRT models to that of the dichotomous three-parameter logistic model in the

context of equating test forms composed of testlets, using traditional equating methods as

criteria for both. For equating test forms composed of testlets, equating methods based on

polytomous IRT models were found to produce results that, more closely agreed with the results

from traditional methods than did equating methods based on the dichotomous three-

parameter logistic IRT model.
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Equating Test Forms Composed of Testlets
Using Dichotomous and Polytomous IRT Models

Introduction

When item response models are applied in test equating situations, strong statistical

assumptions must be made tmidimensionality and local item independence. Because

unidimensional dichotomous logistic item response models are frequently used for equating, it

is important to study the robustness of these models to violations of the assumptions and to

investigate model data fit (Kolen & Brennan, 1995).

This study deals with the application of item response theory (IRT) equating procedures to

tests composed of testlets, small tests that are small enough to manipulate but large enough to

carry their own context (Wainer & Kiely, 1987; Wainer & Lewis, 1990). Reading

comprehension tests, containing sets of passages with collections of items, are examples of tests

composed of testlets. Previous studies dealing with test scores obtained from tests composed of

testlets have indicated that the local item independence assumption is likely to be violated,

making it difficult to satisfy the unidimensionality assumption required by IRT modeling.

That is, when several items in a test are related to a common passage or other common stimulus

material, dependence is present among those items, meaning that conditional dependence

exists (Wainer & Thissen, 1996; Lee & Frisbie, 1997; Yen, 1993). In this situation, the

application of dichotomous IRT models to the equating of test forms composed of testlets might

cause problems. Because there is little evidence in the literature about how the violation of IRT

assumptions affects equating relationships involving testlets, it is not clear how serious the

degree of distortion of equated scores might be.

When testlets are used, passage scores instead of item scores can be used to eliminate the

influence of the dependence among within-passage items (Lee & Frisbie, 1997; Wainer &

Thissen, 1996; Sireci, Thissen, & Wainer, 1991). Polytomous IRT models might be considered

as alternatives to the dichotomous IRT models if this problem is serious. The purpose of this

study is to investigate the feasibility of adopting various polytomous item response models in
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the context of equating test forms composed of testlets. The utility of these models is compared to

that of the dichotomous IRT models by using traditional equating methods as criteria for both.

The theoretical explanations of traditional and dichotomous IRT equating methods are

presented in Kolen (1988), Cook & Eignor (1991), and Kolen & Brennan (1995). In this paper,

background information is limited to the use of polytomous IRT models in equating test forms

composed of testlets.

The multitude of polytomous item response models introduced during the last three

decades includes Samejima's (1969) graded response model, Andrich's (1978) rating scale

model, Master's (1982) partial credit model, and Bock's (1972) nominal model. With respect to

testlet applications, Bock's nominal model has been used most often (Wainer & Thissen, 1996;

Wainer, 1995; Sireci, Thissen, & Wainer, 1991; Wainer, Sireci, & Thissen, 1991) because "the

testlet scores are nominal (or at most semi-ordered) responses...[because] a score of 1 may not

always reflect higher proficiency than a score of 0, due to guessing" (Thissen, Steinberg, &

Mooney, 1989, p.259). Although the graded response model is based on ordered response

categories, its use in testlet-based equating applications may be appropriate. There would be an

ordered quality to testlet-based scores if such scores corresponded to the extent of completeness of

the examinee's reasoning process within a specific testlet. This a priori rationale seems to be

reasonable with reading comprehension testlets, where several dichotomously-scored items

relate to a single reading passage. The more of such items within a testlet that an examinee

answers correctly, the more extensive his or her reasoning process. Therefore, in the present

study, Samejima's (1969) graded response model is compared to Bock's (1972) nominal model

with respect to performance in equating testlet-based test scores.

To apply polytomous item response models in this situation, testlet scores are obtained by

summing the dichotomous item scores of the items that constitute the testlet. If testlet j consists of

nj items, the polytomous testlet score would be an integer between 0 and ni, inclusive. In other

words, a testlet consisting of n dichotomous items can be reconceptualized and treated as a

single polytomous item having nj +1 response categories. Each of the response categories (1, 2,
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tz1+1) corresponds with one of the polytomous passage scores.

Under Bock's (1972) nominal model, the probability that an examinee with a given ability

( 0) responds to category k in passage j is

ir exp[aik 0 + cid
Pjk(e)= K (1)

exp[a jk (9+ cim]
k=1

where j=1,2,...,J (passages), k=1,2,...,K (categories). The constraints, a fk =Icik =0 , are

imposed on this model. The parameters of this model are rescaled by using centered

polynomials of the associated scores to represent the category-to-category changes in the ak and

bk values: aik = Iajp(k K
)P and cfic = (k

K
)P , where the parameters,

2 r 2
P=1 p=1

[a = 1,2, ..., P for p K , are the free parameters to be estimated from the data

(Thissen, Steinberg, & Mooney, 1989). The afk and cik are parameters associated with the kth

category of passage j that identify the shape of the testlet (or passage) category trace lines: alk is

analogous to the discrimination parameter, and cik is analogous to the intercept parameter.

In this study, true score equating is used as one method. The true score is defined by

J K
T(0) = IlduJkpfk(e),

j=lk=1
(2)

where u.k is a weight allocated to response category k of passage j, and all other symbols are as

previously defined. The IRT true score equating method outlined by Cook & Eignor (1991) and

Kolen & Brennan (1995) was applied in this situation.

To implement IRT observed score equating, the distribution of observed number-correct

scores on each form must be obtained, and then the equipercentile method can be applied. In

dichotomous IRT observed score equating, the compound binomial distribution can be used to

generate the distribution of observed number-correct scores for examinees of a given ability

(Lord & Wingersky, 1984). Hanson (1994) extended this algorithm, the so-called Lord &
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Wingersky recursive formula, to polytomous items (Wang, Kolen & Harris, 1996):

For item 1,

P1(X = x1°) = P(U1 = x10),
For item k=2,3,4,...,K,

nk

Pk(X = xle) = P k_1(X = x u)P(U k = 49), x=0 ,

11=0 k=1

where Uk represents a random variable for the score on item k, ranging from 0 to nk .

After getting the observed number-correct distribution for examinees of a given ability,

the observed score distribution of Form X (New Form) f6r examinees of various abilities can be

found by accumulating the observed score distribution for examinees at each ability. If the

distribution of ability is characterized by a discrete distribution on a finite number of equally

spaced points, the observed score distribution for examinees of various abilities can be

approximated by summing over abilities:

f (x) = f (x10)t y (9) , (4)

(3)

where v(0) is the distribution of 0 and f (xIO) is the conditional number-correct score

distribution given 6, which can be obtained by Equation 3. The observed score distribution of

Form Y (Old Form), g(y), can be found by using Equations 3 and 4 and replacingx with y.

Then, the conventional equipercentile method can be used to find score equivalents (Kolen &

Brennan, 1995; Zeng & Kolen, 1995).

Under Samejima's (1969) graded response model, consider passage j in which the

number-correct score corresponding to the dichotomous items that constitute the passage can be

classified into one of K categories, numbered 1 through K inclusive with consecutive integers,

and "call such a response a 'graded response'..." (p.20). Then, the probability that a graded

response to passage j is classified into category k or higher, given 0, is
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*

P jk(6) '

1

1

k=1

2,_.k<K

k>K

(5)1+ exp[a1(0 bj,k_01

0

The parameter ai is the passage discrimination parameter, which is constant across the

response categories of a particular passage (i.e., constant throughout the whole reasoning

process). (This is another important way in which the graded response model differs from

Bock's (1972) nominal model; in the nominal model the passage discrimination parameter is

free to vary across the response categories of a particular passage.) The ki,k_1 is the difficulty

parameter of the category boundary k-1 ( 2 kK) for passage j, and it is free to vary among

the category boundaries of a particular passage such that ki,k_l <ki,k. (Note that bj,k_l is the

0-value at which the probability of the response being classified into category k or higher is

0.5.) The probability that a graded response is classified in category k, given 0, is defined by

P;k (0) -13,k+1(6) , which is also written as

pik (0) =

1

1

k = 1

2kK-1

k=K

(6)

1+ exp[.-ai (0 k11)]

1

+ exp[a J(O ki,k_1)]

1

1+ exp[a1(0 kik)]

1+ exp[a1(0 b j,k_l)]

An examinee's true score can be calculated by using Equations 2 and 6, and then the

procedures for IRT true score equating can be applied. From Equations 3 and 6, the observed

number-correct distribution for examinees of a given ability can be obtained, and the observed

score distribution for examinees of various abilities can be found by Equation 4. Then, the

procedures for IRT observed score equating can be applied to this situation.
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Objectives

The objectives of this study were to:

1. Assess the local item dependence and dimensionality of tests composed of testlets to

determine the appropriateness of the dichotomous IRT models and various polytomous IRT

models in the context of equating these test forms.

2. Compare equating results from traditional equating methods (i.e., mean, linear, and

equipercentile) with those from the dichotomous three-parameter logistic model and various

polytomous item response models to investigate the implications of using these IRT models for

equating test forms composed of testlets.

3. Investigate the generalizability of equating results for tests composed of various types of

testlets, such as the Reading Comprehension, Maps and Diagrams, and Math Problem Solving

and Data Interpretation tests of the Iowa Tests of Basic Skills (ITBS).

Method

Data Sources

The data for this study were taken from the 1995 ITBS Form M to Form K equating study.

Data from the entire grade 8 sample of students for the Reading Comprehension (Reading),

Maps and Diagrams (Maps), Math Problem Solving and Data Interpretation (Math), and

Vocabulary tests were used (Hoover, Hieronymous, Frisbie & Dunbar, 1994). The sample size

and the general characteristics of each test are presented in Table 1.

Insert Table 1 About Here

Though the Vocabulary tests do not have naturally-formed testlets, seven testlets were

randomly formed for the purpose of comparison with tests composed of naturally-formed

testlets. Two forms used in the equating, Form M (New Form) and Form K (Old Form), have

exactly the same number of items per corresponding test:
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Analyses

The local item independence assumption of the dichotomous IRT models was checked

using Yen's (1984) Q3 statistic, a correlation of the residuals of an item pair based on IRT

models. The computer program IRT_LD (Chen, 1993; Chen & Thissen, 1997) was used to

compute Yen's Q3 statistic. The distributional characteristics of the pair of random variables

(one for within-passage Q3 and one for between-passage Q3) for each form of each test were

compared.

In order to check the unidimensionality assumption, principal component analyses and

several exploratory factor analyses for each form of each test were completed. One analysis

used a tetrachoric correlation matrix (obtained using PRELIS2) (J6reskog & Sorbom, 1993)

based on individual items, and the other used a product-moment correlation matrix based on

testlet scores. Comparisons among eigenvalues from the principal component analyses were

made and root mean squares were compared for each factor model.

The equating designs used in the 1995 ITBS Form M to Form K equating included a single

group design and a random groups design. For tests used in this study, only a random groups

design was used. Then, analyses were conducted with the RAGE (Zeng, Kolen & Hanson, 1995)

computer program to find an equating function between both forms for each test using mean,

linear, and equipercentile methods. For dichotomous IRT equating, item parameters were

estimated by using the BILOG (Mislevy & Bock, 1990) program. (It was not necessary to place

item parameters of the two forms on a common scale because a random groups design had been

used for the equating.) True score and observed score equating relationships were found by

using the PIE (Hanson & Zeng, 1995) computer program. The item parameters under Bock's

nominal model and Samejima's graded response model were estimated with the MULTILOG

(Thissen, 1991) program. The test characteristic curves for the tests in both forms and both true

score and observed score equating functions were found by using a FORTRAN 90 program that

was written for this purpose.

1 0
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The moments of the distribution of equated scores from each equating method were

calculated and compared. For comparing the overall level of discrepancy of each IRT equating

method from the traditional equating methods, unweighted and weighted root mean squares

(Harris & Crouse, 1993) were computed.

One restriction of the MULTILOG (Thissen, 1991) application program had to be

addressed during the analysis: this program can accommodate at most 10 categories. However,

both forms of the Reading test contained one passage that had more than 10 categories. In those

cases, two categories were combined into a single category. Because the proportion of

examinees in the combined categories was very small in both cases, the influence on the

equating relationship of combining categories should not be significant in practical sense.

Results and Discussion

Local Independence

Yen's Q3 statistic was used here as a measure of local item dependence. If there are n

items in a test, n(n-1)/2 Q3 statistics can be computed. In a similar way, for kh items in the hth

passage, there are kh (kh 1)/ 2 Q3 statistics. Two types of Q3 statistics were distinguished in

this study for each form of each test: one is the within-passage Q3 statistics (# of Q3 =

Ikh(kh 1) 1 2 ), and the other is the between-passage Q3 statistics (# of Q3 = n(n-1)/2
h=1

Ikh(kh 1)/ 2). The distributional statistics for within-passage and between-passage
11=1

local item dependence measures are shown in Table 2.

Insert Table 2 About Here

Q3

Even though the Q3 statistic is a correlation between residuals of an item pair based on

IRT models (therefore, zero correlation might be expected for a locally independent item pair),

Q3 has a tendency to be slightly negative in the null case (Yen, 1984; Yen, 1993; Chen &

Thissen, 1997). Yen (1993) demonstrated that the expected value of Q3 statistics, when local
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independence is true, is approximately -1/(n-1), where n is the number of test items. These

approximations of the expected values for the Q3 statistics are also presented in Table 2. These

values can be used as a criterion for comparing the overall level of local dependence of within-

and between-passage item pairs.

The averages of the Q3 statistics from within- and between-passage item pairs would be

similar to the expected values of the Q3 measures if the local item independence assumption

holds. Table 2 shows that the averages of between-passage the Q3 statistics for both forms of

Reading, Maps, and Math tests have values similar to the expected values of Q3 statistics,

implying that item pairs between passages are locally independent. In contrast, the averages of

within-passage Q3 statistics for both forms of these tests have more positive values compared to

the expected values of Q3, even though the magnitudes of the differences in the Reading and

Maps test forms are greater than in the Math test forms. This means that the local item

independence assumption would be violated. For the Vocabulary test, because testlets were

randomly constructed, averages of within- and between-passage Q3 statistics are both similar

to the expected value of Q3, as would be anticipated. In comparing the difference between the

observed mean and the expected mean of the Q3 values with the standard deviation of the

observed Q3 statistics, in cases where local item dependence was identified, the magnitude of

the difference seems to be about one standard deviation, except for the Math test forms. On the

other hand, where local item dependence was not identified, the magnitude of the difference is

much less than one standard deviation and close to zero.

Unidimensionality

Table 3 provides the first ten eigen-values from tetrachoric correlation matrices based on

individual items. These indicate that more than one factor would be required for explaining the

data of both forms of the Reading and Maps tests and Form M of the Math test (at least the

difference between the second eigenvalue and the third eigenvalue does not seem to be

negligible compared to the difference between the third eigenvalue and the fourth eigenvalue).

For both forms of the Vocabulary test and Form K of the Math test, one factor appears to be

12
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appropriate to explain the data. Scree plots for both forms of each test are presented in Figure 1.

Insert Table 3 About Here

Insert Figure 1 About Here

To get more information about the dimensionality of each form of each test, the root mean

square (RMS) of the off-diagonal residuals under each specified number of factors was

computed, as shown in Table 4. The difference between the RMSs of the one factor model and the

Insert Table 4 About Here

two factor model from both forms of the Reading and Maps tests and Form M of the Math test are

about two to six times greater than the difference between the RMSs of the two factor model and

the three factor model. This means that one factor does not appear to be sufficient to describe the

dimensionality of these test forms. For both forms of the Vocabulary test and Form K of the Math

test, the difference between the RMSs of the one factor model and the two factor model is similar

to the difference between the RMSs of the two factor model and the three factor model. Here, one

factor seems sufficient to describe dimensionality. The results of several exploratory factor

analyses, mainly comparing the RMSs, are consistent with the results from the principal

component analyses.

On the basis of these results, it might be suspected that the unidimensional dichotomous

IRT model might be problematic for equating test forms composed of testlets. That is, the

common use of a unidimensional dichotomous IRT model in this equating situation could be

suspect because of violations of assumptions. To check the possibility of adopting polytomous

IRT models instead of using dichotomous IRT models, principal component analyses with

product moment correlation matrices among testlet scores were conducted. Eigenvalues and

scree plots are presented in Table 5 and Figure 2, respectively.

Insert Table 5 About Here
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Insert Figure 2 About Here

One dominant factor is evident, and the other eigenvalues are considered negligible. The

well-known Kaiser (1970) criterion, retaining eigenvalues greater than unity, has been

criticized because of its susceptibility to the overidentification of dimensions (Cliff, 1988).

Based on the Kaiser criterion, only one dimension is retained for all forms of all tests. In view

of this susceptibility to overidentification, unidimensionality can be supported for the test forms

used in this study, when testlet scores are used as the unit of analysis. Consequently, further

analyses should not be needed in this situation, and the use of unidimensional polytomous item

response models instead of dichotomous IRT models can be advocated on the basis of these

results.

Comparisons with Traditional Equating Methods

Score conversions from mean, linear, equipercentile, dichotomous IRT true and observed

score, Bock's nominal model true and observed score, and Samejima's graded response model

true and observed score equatings for each test were tabulated and graphed. The results are

complex and it is difficult to show the differences among equating functions because so many

equating methods are displayed in one graph and table. Two general observations can be made,

however:

1. All methods provide a similar equating relationship in the middle score range, but in

the other score ranges it is reasonable to expect somewhat different equated scores from

different equating methods.

2. All true and observed score equating methods of the IRT models (dichotomous IRT true

and observed, Bock's nominal model true and observed, and Samejima's graded

response model true and observed equating methods) produce similar equivalents to

Form K from Form M along the score scale.

For a more convenient comparison among the various equating methods, difference

scores can be used. The difference scores were calculated by subtracting the equated score of a

1 4
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baseline equating method (in this study, traditional equating methods such as the mean,

linear, or equipercentile method) from the equated score of each equating method (in this study,

dichotomous and polytomous IRT true or observed equating methods). To simplify the graph,

the difference score plots of IRT true score and observed score equating methods are graphed

separately. Even though it may be somewhat difficult to compare IRT true and observed score

score equating methods by using separate graphs, there will be little loss of information because

the IRT true and observed score equating methods provide similar equating relationships. On

the other hand, because a main focus of this study is to compare the performance of dichotomous

IRT models to that of polytomous item response models in equating test forms composed of

testlets, the loss of information can be compensated for by providing the difference score plots of

IRT true and observed equating methods separately. The plots for the Reading test are presented

in Figures 3 and 4.

Insert Figure 3 About Here

Insert Figure 4 About Here

The vertical axis of the graphs in Figure 3 represents the difference score of each plotted

equating method from the mean equating equivalents. One of the dotted lines, which is parallel

to the horizontal axis and crosses the zero point on the vertical axis, represents a baseline

equating method. The plotted line that was closest to this baseline represents the equating

method that provides the equating function most similar to the referenced traditional equating

method. The nominal and graded response model true.score equating functions are much more

similar to the mean and linear equating functions than the dichotomous IRT true score

equating functions are. In the score range under 15, the nominal model true score equating

method produces equivalents most similar to those of mean and linear equating. In the middle

score range, from about 18 to 22, the equated scores of three methods are similar to those from

both mean and linear equating methods. In the score range over 25, the graded response true

score equating method provides equivalents most similar to those of mean and linear equating.
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For the third graph in Figure 3, only for the scores of 30 and 31 does the dichotomous IRT true

score equating method provide more similar equivalents to the baseline method. Otherwise, the

nominal and graded response models provide more similar equivalents to those of the

equipercentile equating method.

In Figure 4, which represents the difference scores between the IRT observed score

equating methods and traditional equating methods, observed score equating methods based on

polytomous IRT models provide more similar equating functions than the dichotomous IRT

observed equating method does. For the first graph, in the score ranges under 13 and over 44,

equated scores from the three methods are similar, but in the score range from 14 to 20, the

dichotomous IRT observed score equating method is more similar, and on other score ranges

(21-44), the graded response model is more similar. Similar trends can be found in the second

graph using the linear equating method as a baseline. For the third graph, with the

equipercentile equating method as a baseline, in the score range from 30 to 33, the dichotomous

IRT observed score equating method provides more similar equivalents to those of the baseline

method than do the other polytomous IRT observed equating methods. In the other score ranges,

either the nominal or graded response model observed score equating method provides score

equivalents more similar to those of the baseline equating method than does the dichotomous

IRT observed score equating method.

As was found in the case of the Reading test, the polytomous IRT score equating methods,

whether true score or observed score equating, give results that are much more similar to the

referenced traditional equating methods than dichotomous IRT equating methods do for the

Maps test. The difference score plots of both true and observed score equating methods for the

Maps test are presented in Figures 5 and 6.

Insert Figure 5 About Here

Insert Figure 6 About Here

The main difference in the trends of the Maps test from those of the Reading test is that the

1 13
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graded response model equating methods provide similar equating functions in relation to the

mean and linear equating methods. For the graphs using the equipercentile method as a

baseline, the graded response model still provides the most similar equating function to that of

the baseline method. Nominal model true or observed score equating results are more similar

to the referenced traditional equating methods than are the dichotomous IRT equating true or

observed score equating methods, except in the score ranges under 4 and over 26. Because the

proportions of examinees in these score ranges (under 4 and over 26) are relatively small, the

nominal model true and observed score equating methods would be expected to produce more

similar equating functions to those of the traditional equating methods than do dichotomous

IRT true or observed score equating methods.

The difference score plots of both true and observed score equating methods for the Math

test are presented in Figures 7 and 8. Dichotomous IRT true score equating and polytomous IRT

Insert Figure 7 About Here

Insert Figure 8 About Here

true score equating methods provide very similar equating functions, except in the score range

under 11, where the polytomous IRT models are more similar to baseline methods. The

similarity of the equating functions among these three methods is evident when comparing the

observed score equating functions. The similarity among these three methods can be explained

in terms of the violation of the assumptions for IRT modeling. That is, as previously indicated,

the assumptions for dichotomous IRT modeling are less violated in the Math test compared to

the Reading and Maps tests. So the similarity of the equating functions of the dichotomous and

polytomous IRT models might not be surprising here. These results might be used as one piece

of evidence to support the relationship between the degree of violation of IRT assumptions and

its effect on equating relationships. Polytomous IRT true score equating methods provide

slightly more similar equating relationships to the referenced traditional equating methods

than does the dichotomous IRT true score equating method. This finding might be caused by
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relatively large discrepancies within the lower portion of the score range. These relatively big

discrepancies were not found in the observed score equating relationships. From these results,

it might be hypothesized that IRT true score equating is more sensitive to the violation of the

assumptions of IRT modeling than IRT observed score equating might be. This could be a topic

for future research.

The Vocabulary test was included in this study for the purpose of comparison with tests

composed of testlets because it can be thought of as the most unidimensional test in the ITBS test

battery. Consequently, the unidimensional dichotomous IRT model could be expected to be the

most appropriate model for equating test forms of this Vocabulary test. For comparing the

results with other tests composed of testlets, 7 testlets were randomly constructed and the

equating procedures of the polytomous IRT models were applied to find an equating function.

Similar equating relationships would be expected to be found for both dichotomous and

polytomous IRT equating methods. The difference score plots of both true and observed score

equating methods for the Vocabulary test are presented in Figures 9 and 10.

Insert Figure 9 About Here

Insert Figure 10 About Here

At first, it might seem strange to find very different equating relationships among the

equating methods. However, when the frequency distributions of the two forms of the

Vocabulary test are examined, the unexpected result can be explained. That is, for Form M,

there is no examinee with a score lower then 7, and only 5 percent of the examinees are under a

score of 15. As a result, the item parameter estimation procedures are likely to be affected,

especially in estimating the lower asymptote parameters. Compared to Form M, in Form K, 5

percent of the examinees are under a score of 10. The distributions of the two forms are very

different. For this reason, these Vocabulary tests may not be good examples for use as a basis for

comparison with tests composed of testlets. However, several important outcomes can be

determined from the results of the equating of the Vocabulary test forms. First, the three true
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equating methods in Figure 9 provide similar equating functions, except in the score range

under 17 (lower protion of the score scale). This finding makes sense if the frequency

distributions of the two forms are considered. Second, ignoring the score range under 17, the

dichotomous IRT true score equating method provides more similar equivalents on several

score points, especially when using the equipercentile equating method as the baseline. Third,

the similarity of the equating functions among the three methods are more evident in observed

score equating than in true score equating. This finding is consistent with the conjecture made

in analyzing the Math test.

Discussion so far has been based on the score conversions of dichotomous and polytomous

IRT equating methods and their differences from baseline traditional methods. It would be also

informative to summarize these differences using an overall index to represent the similarity

and discrepancy of each equating method relative to the three baseline equating methods. For

this purpose, Table 6 shows the moments for converted scores for each method and the absolute

difference from the target, Form K moments in this case.

Insert Table 6 About Here

The mean of converted scores in Reading using the nominal model true and observed

score equating methods are 24.82 and 24.78, respectively, and differences from the target are

0.03 and 0.07, respectively. These differences are much smaller than those of dichotomous IRT

true and observed score equating methods (0.57 and 0.60, respectively). The nominal model

also provides more similar standard deviation, skewness, and kurtosis values to the target

than dichotomous IRT model true or observed score equating methods do. The graded response

model true and observed score equating methods are also more similar than the dichotomous

IRT model equating methods, in terms of their moments, even though they are less similar to

the nominal model. In the Maps test, the graded response model provides much more similar

moments to those of the target than do the other methods. The nominal model still provides more

similar moments than the dichotomous IRT model does. For the Math test, the means of the
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nominal and graded response models are similar and are a little bit more similar to the mean

of the target than that of dichotomous IRT model. However, in terms of standard deviation,

skewness, and kurtosis, it is difficult to say which method provides more similar moments to

those of the target. For the Vocabulary test, both true and observed score equating methods based

on the graded response model have more similar means to those of the target, but have much

different skewness and kurtosis values relative to those of the target than do dichotomous IRT

true and observed score equating methods. As a result, it is hard to tell which method is more

similar, in terms of moments, to those of the target. In short, for the Reading and Maps tests, the

polytomous IRT model equating methods (either nominal or graded response model) produce

more similar moments than the dichotomous IRT equating methods do, and for the Math test,

they provide somewhat more similar moments. For the Vocabulary test, it is not possible to

reach a general conclusion about the similarity of moments to the target among the various

equating methods.

To provide a more direct overall index for comparing two equating methods, unweighted

and weighted root mean squares were computed. The unweighted root mean square (URMS) is

generally defined as URMS = (I(Ai 4 )2 / k)1/ 2 , where Ai is the equivalent of a raw score

of i on the new test, Bi is another equivalent of a raw score of i on the new test, k represents the

number of items, and i represents each raw score point. This URMS can be used to examine

differences that occur throughout the score scale. However, this index does not take the score

distribution of the new test (or distribution of equated scores) into account. The degree of

distortion of the equated scores within a score range that includes a large proportion of

examinees would be more important than the distortion of equated scores within a score range

that includes a fairly small proportion of examinees. For this reason,. the root mean square

(RMS), which is an index weighted by the probability function of examinees at equated score

points, is also compute0Y the formula of RMS = f (A Bi)2 ) where fi is the

probability function of the raw score of the new form and the other notation is the same as for the

2 0



1 8

URMS. These two overall summary indices are presented in Table 7.

Insert Table 7 About Here

For the Reading test, using traditoinal equating methods as referents, polytomous IRT

equating methods provide more similar equating relationships to the referenced methods than

dichotomous IRT methods do. This finding is true when either the URMS or RMS is used, but the

difference is more clear using the RMS than the URMS.

For the Maps test, the graded response model true or observed score equating methods are

more similar to the three referenced methods than the methods based on dichotomous IRT or the

nominal models, whether URMS or RMS is used. The differences in URMSs between the

dichotomous IRT equating methods and the nominal model equating methods are not obvious,

even though the differences in RMSs between the observed score equating methods based on the

two models are more distinct (The RMS of the nominal model observed score equating method

is smaller than the RMS of dichotomous IRT model observed score equating method is.).

For the Math test, according to the URMS, the differences among the three IRT models are

not very great. However, the RMSs of the equating methods based on polytomous IRT models

have somewhat smaller values than the RMSs of the equating methods based on the dichotomous

IRT model. This result might be caused by the fact that the assumptions of dichotomous IRT

modeling are violated less with the Math test than with the Reading or Maps tests. In other

words, because the assumptions of dichotomous IRT modeling are violated less with the Math

test, the degree of distortion of the equated scores is less severe than for the other tests composed

of testlets.

For the Vocabulary test, the differences in the URMSs among equating methods based on

each IRT model are not clearly distinct. Based on the RMSs, the graded response model

provides more similar equating functions to the referenced equating methods, such as the mean

and linear equating methods, than do other IRT models. One important observation is that the

dichotomous IRT observed score equating method was found to be the best method when using
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the RMS as an index and the equipercentile method as a baseline. In sum, it is not possible to

identify a single IRT model that consistently provides the most similar equating function to the

referenced equating methods.

Conclusions

From the results presented, the polytomous IRT model true and observed score equating

methods provide equating relationships that are more similar to traditional equating methods,

such as mean, linear, and equipercentile methods, than do the dichotomous IRT true or

observed score equating methods for the Reading, Maps, and Math tests. (This evidence is

relatively less clear for the Math test than for the Reading and Maps tests.) The reason might be

explained by the violation of the assumptions of dichotomous IRT modeling the

unidimensionality and local item independence assumptions when testlets are used. A

comparison of the equating functioiis derived from traditional methods with those obtained with

IRT methods is one possible way to check the validity of IRTmodel equating methods. Because

polytomous IRT models satisfy the assumptions of IRT modeling more closely than do

dichotomous IRT models for the case of tests composed of testlets, it is reasonable to expect better

equating relationships using polytomous IRT equating methods than using dichotomous IRT

equating methods. The nominal model and graded response model seem to offer the best

alternatives for equating test forms composed of testlets.

t7
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TABLE 1
Descriptive Statistics for Data Sources Used in This Study

Characteristic Reading Maps Math Vocabulary
ITBS Form K (Old Form)

Sample Size 663 632 537 666
No. of Items 49 33 36 43
No. of Passages 8 5 8 7
No. of Items per Passage 9,4,7,5,5,6,3,10 7,7,6,6,7 8,4,4,4,4,4,4,4 7,6,6,6,6,6,6
X 24.9 16.3 16.5 24.4
Sx 9.99 6.34 6.38 8.87
Skewness 0.375 0.383 0.363 0.018
Kurtosis 2.216 2.306 2.413 2.170

ITBS Form M (New Form)
Sample Size 680 653 561 680
No. of Items 49 33 36 43
No. of Passages 7 5 7 7
No. of Items per Passage 8,4,9,4,5,8,11 7,7,6,6,7 8,6,6,4,4,4,4 7,6,6,6,6,6,6
Y 25.9 15.3 19.2 27.1

Sx 10.53 6.31 6.67 6.88

Skewness 0.235 0.408 0.191 -0.244
Kurtosis 2.065 2.444 2.257 2.623
Note : Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math Problem Solving and
Data Interpretation
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TABLE 2
Distribution Yen's Q3 Statistics for Within-Passage and Between-Passage Item Pairs

Test No. of Q3 E (Q3) Mean Diff. S.D. Skewness Kurtosis Range

Reading (K) 1176 -.021
Between 1030 -.021 .000 .043 .006 3.045 -.180- .121
Within 146 .038 .059 .058 .044 3.328 -.131-.196

Reading (M) 1176 -.021
Between 1007 -.027 .006 .045 -.103 3.016 -.181-.111
Within 169 .058 .079 .069 1.014 6.097 -.080-.400

Maps (K) 528 -.031
Between 435 -.029 .002 .045 -.056 2.838 -.177-.098
Within 93 .031 .062 .049 .375 2.886 -.064-.164

WO (m) 528 -.031
Between 435 -.033 .002 .046 .166 3.002 -.167-.177
Within 93 .030 .061 .070 1.018 4.905 -.118-.281

Math (K) 630 -.029
Between 560 -.022 .007 .049 -.013 3.084 -.183-.137
Within 70 .008 .037 .057 .525 2.858 -.087-.166

Math (M) 630 -.029
Between 548 -.024 .005 .045 .028 3.581 -.159-.186
Within 82 .002 .031 .056 .008 4.440 -.191-.172

Vocabulary (K) 903 -.024
Between 792 -.018 .006 .044 -.098 2.833 -.147-.106
Within 111 -.012 .012 .038 -.308 2.431 -.103-.059

Vocabulary (M) 903 -.024
Between 792 -.016 .008 .044 -.176 3.078 -.174-.135
Within 111 -.018 .006 .044 -.057 3.010 -.120-.116

Notes : Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math Problem Solving and
Data Interpretation; E (Q3) = Expected value of Q3, Diff. = Absolute value of the difference between E ( Q3)
and the sample mean.
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TABLE 3
First Ten Eigenvalues of Tetrachoric Correlation Matrices Based on Individual Item Scores

Rank of
Eigenvalue

Reading (49 Items) Maps (33 Items) Math (36 Items) Vocabulary (43 Items)
Eigenvalue Difference Eigenvalue Difference Eigenvalue Difference Eigenvalue Difference

ITBS Form K (Old Form)
1 14.07 11.15 7.84 6.00 8.41 6.42 13.59 11.92
2 2.92 1.23 1.84 0.34 1.99 0.19 1.67 0.19
3 1.68 0.17 1.50 0.07 1.80 0.34 1.48 0.07
4 1.51 0.19 1.43 0.11 1.46 0.11 1.41 0.15
5 1.32 0.01 1.32 0.08 1.35 0.07 1.26 0.06
6 1.31 0.06 1.24 0.05 1.28 0.05 1.20 0.01
7 1.25 0.05 1.19 0.04 1.23 0.04 1.19 0.03
8- 1.20 0.02 1.15 0.09 1.19 0.05 1.16 0.06
9 1.18 0.03 1.06 0.01 1.14 0.07 1.10 0.03

10 1.15 0.03 1.05 0.05 1.07 0.02 1.07 0.02
ITBS Form M (New Form)

1 15.83 12.60 7.65 5.59 9.13 7.08 10.77 8.73
2 3.23 1.56 2.06 0.57 2.05 0.49 2.04 0.31
3 1.67 0.25 1.49 0.04 1.56 0.08 1.73 0.15
4 1.42 0.09 1.45 0.04 1.48 0.18 1.58 0.1.1
5 1.33 0.02 1.41 0.17 1.30 0.04 1.47 0.10
6 1.31 0.06 1.24 0.08 1.26 0.01 1.37 0.07
7 1.25 0.06 1.16 0.05 1.25 0.11 1.30 0.01
8 1.19 0.05 1.11 0.02 1.14 0.01 1.29 0.10
9 1.14 0.05 1.08 0.04 1.13 0.07 1.19 0.07

10 1.09 0.04 1.04 0.05 1.06 0.02 1.12 0.01
Note : Reading = Reading
Data Interpretation

Comprehension, Maps = Maps and Diagrams, Math = Math Problem Solving and
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TABLE 4
Root Mean Square of Off-diagonal Residuals for Specified Numbers of Factors

Number of Reading (49 Items) Maps (33 Items) Math (36 Items) Vocabulary (43 Items)
Factors RMS Difference RMS Difference RMS Difference RMS Difference

ITBS Form K (Old Form)
1 7.2 1.3 6.8 1.0 7.1 0.8 5.7 0.5
2 5.5 0.4 5.8 0.5 6.3 0.7 5.2 0.3
3 5.1 0.3 5.3 0.4 5.6 0.5 4.9 0.3
4 4.8 0.2 4.9 0.4 5.1 0.3 4.6 0.2
5 4.6 0.3 4.5 0.3 4.8 0.3 4.4 0.3
6 4.3 0.3 4.2 0.3 4.5 0.3 4.1 0.2
7 4.1 0.2 3.9 0.4 4.2 0.3 3.9 0.3
8 __ _ __3.9 0.2 3.5 0.2 3.9 0.3 3.6 0.2
9 3.7 0.2 3.3 0.3 3.6 0.2 3.4 0.2

10 3.5 3.0 3.4 3.2
ITBS Form M (New Form)

1 7.7 2.3 7.3 1.3 7.1 1.1 6.9 0.6
2 5.4 0.4 6.0 0.5 6.0 0.5 6.3 0.4
3 5.0 0.3 5.5 0.5 5.5 0.4 5.9 0.4
4 4.7 0.3 5.0 0.5 5.1 0.4 5.5 0.4
5 4.4 0.2 4.5 0.3 4.7 0.3 5.1 0.3
6 4.2 0.3 4.2 0.3 4.4 0.3 4.8 0.2
7 3.9 0.2 3.9 0.3 4.1 0.3 4.6 0.3
8 3.7 0.2 3.6 0.3 3.8 0.2 4.3 0.3
9 3.5 0.1 3.3 0.3 3.6 0.3 4.0 0.2

10 3.4 3.0 3.3 3.8
Note : Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math Problem Solving and
Data Interpretation, RMS = root mean square of off-diagonal residuals. The scales of the RMS and difference
have been changed by multiplying all entries by 100 and then rounding to one decimal place.
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TABLE 5
Eigenvalues of Product-Moment Correlation Matrices Based on Passage Scores

Rank of
Eigenvalue

Reading Maps Math Vocabulary
Eigenvalue Difference Eigenvalue Difference Eigenvalue Difference Eigenvalue Difference

ITBS Form K (Old Form)
1 4.10 3.30 2.59 1.91 3.34 2.51 4.44 3.95
2 0.80 0.17 0.68 0.06 0.83 0.01 0.49 0.01
3 0.63 0.03 0.62 0.05 0.82 0.10 0.48 0.04
4 0.60 0.07 0.57 0.03 0.72 0.05 0.44 0.02
5 0.53 0.07 0.54 0.67 0.06 0.42 0.03
6 0.46 0.01 0.61 0.04 0.39 0.04
7 0.45 0.04 0.57 0.12 0.35
8 0.41 0.45

ITBS Form M (New Form)
1 3.95 3.22 2.59 1.81 3.31 2.47 3.67 2.99
2 0.73 0.17 0.78 0.19 0.84 0.14 0.68 0.08
3 0.56 0.03 0.59 0.06 0.70 0.05 0.60 0.04
4 0.53 0.09 0.53 0.02 0.65 0.08 0.56 0.03
5 0.44 0.02 0.51 0.57 0.06 0.53 0.04
6 0.42 0.04 0.51 0.09 0.49 0.02
7 0.38 0.42 0.47

Note : Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math Problem Solving and
Data Interpretation
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TABLE 6
Moments for Equating ITBS Form M to Form K

Form/ Mean Difference S.D. Difference Skewness Difference Kurtosis Difference
Method

Reading Comprehension
Form K 24.85 9.985 0.375 2.216
Form M 25.93 10.529 0.235 2.065
Mean 24.85 0.00 10.529 0.544 0.235 0.140 2.065 0.151
Linear 24.85 0.00 9.985 0.000 0.235 0.140 2.065 0.151
Equi_p 24.85 0.00 9.986 0.001 0.372 0.003 2.217 0.001
DIRT (T) 24.28 0.57 9.671 0.314 0.481 0.106 2.396 0.180
DIRT (0) 24.25 0.60 9.781 0.204 0.408 0.033 2.327 0.111
Nom (T) 24.82 0.03 9.841 0.144 0.337 0.038 2.322 0.106
Nom (0) 24.78 0.07 9.722 0.263 0.316 0.059 2.272 0.056
Grad-(T) 2510- 0.25 9.840 0.145 0.325 0.050 2.198 0.018
Grad (0) 25.07 0.22 9.773 0.212 0.303 0.072 2.169 0.047

Maps and Diagrams
Form K 16.28 6.337 0.383 2.306
Form M 15.28 6.307 0.408 2.444
Mean 16.28 0.00 6.307 0.030 0.408 0.025 2.444 0.138
Linear 16.28 0.00 6.337 0.000 0.408 0.025 2.444 0.138
Equi_p 16.27 0.01 6.326 0.011 0.376 0.007 2.291 0.015
DIRT (T) 16.03 0.25 6.022 0.315 0.576 0.193 2.582 0.276
DIRT (0) 15.98 0.30 6.085 0.252 0.487 0.104 2.542 0.236
Nom (T) 16.11 0.17 6.071 0.266 0.428 0.045 2.337 0.031
Nom (0) 16.08 0.20 6.172 0.165 0.389 0.006 2.347 0.041
Grad (T) 16.19 0.09 6.271 0.066 0.344 0.039 2.364 0.058
Grad (0) 16.21 0.07 6.273 0.064 0.345 0.038 2.363 0.057

Math Problem Solving and Data Interpretation
Form K 16.48 6.379 0.363 2.413
Form M 19.17 6.674 0.191 2.257
Mean 16.48 0.00 6.674 0.295 0.191 0.172 2.257 0.156
Linear 16.48 0.00 6.379 0.000 0.191 0.172 2.257 0.156
Equi_p 16.48 0.00 6.390 0.011 0.366 0.003 2.451 0.038
DIRT (T) 16.79 0.31 6.361 0.018 0.385 0.022 2.352 0.061
DIRT (0) 16.73 0.25 6.440 0.061 0.312 0.051 2.319 0.094
Nom (T) 16.68 0.20 6.399 0.020 0.316 0.047 2.282 0.131
Nom (0) 16.63 0.15 6.466 0.087 0.297 0.066 2.254 0.159
Grad (T) 16.70 0.22 6.399 0.020 0.357 0.006 2.406 0.007
Grad (0) 16.65 0.17 6.432 0.053 0.335 0.028 2.361 0.052

Vocabulary
Form K 24.43 8.874 0.018 2.170
Form M 27.11 6.878 -0.244 2.623
Mean
Linear

24.43
24.43

0.00
0.00

6.878
8.874

1.996
0.000

-0.244
-0.244

0.262
0.262

2.623
2.623

0.453
0.453

Equi_p 24.42 0.01 8.856 0.018 0.020 0.002 2.162 0.008
DIRT (T) 24.71 0.28 8.651 0.223 0.075 0.057 2.061 0.109
DIRT (0) 24.61 0.18 8.603 0.271 0.031 0.013 2.197 0.027
Nom (T) 24.35 0.08 8.589 0.285 0.008 0.010 2.294 0.124
Nom (0) 24.29 0.14 8.452 0.422 -0.022 0.040 2.339 0.169
Grad (T) 24.45 0.02 8.611 0.263 -0.180 0.198 2.452 0.282
Grad (0) 24.43 0.00 8.442 0.432 -0.181 0.199 2.483 0.313
Note: Mean = mean equating, Linear = linear equating, Equi_p = equipercentile equating, DIRT (T) =
dichotomous IRT true score equating, DIRT (0) = dichotomous IRT observed score equating, Nom (T) =
nominal model true score equating, Nom (0) = nominal model observed score equating, Grad (T) = graded
response model true score equating, Grad (0) = graded response model observed score equating, Difference =
absolute value of moment difference from form K moment using each equating method.
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TABLE 7
Unweighted and Weighted Root Mean Squares for Each IRT Equating Method

Using Traditional Equating Methods as Baselines

Unweighted Root Mean Squares Weighted Root Mean Squares
Method Mean Linear Equipercentile Mean Linear Equipercentile

Reading Comprehension Test
DIRT (T) 1.482 1.115 0.834 1.335 1.055 0.884
Nominal (T) 0.942 0.657 0.614 0.867 0.533 0.551
Graded (T) 1.058 0.632 0.556 0.807 0.440 0.562
DIRT (0) 1.241 0.874 0.793 1.151 0.890 0.808
Nominal (0) 1.085 0.589 0.644 0.919 0.503 0.613
Graded (0) 1.071 0.518 0.572 0.832 0.398 0.572

Maps and Diagrams Test
DIRT (T) 0.577 0.602 0.630 0.514 0.533 0.663
Nominal (T) 0.618 0.656 0.605 0.349 0.374 0.478
Graded (T) 0.376 0.393 0.351 0.172 0.190 0.380
DIRT (0) 0.426 0.462 0.547 0.426 0.447 0.592
Nominal (0) 0.444 0.484 0.471 0.287 0.309 0.435
Graded (0) 0.295 0.321 0.357 0.160 0.177 0.371

Math Problem Solving and Data Interpretation Test
DIRT (T) 1.388 1.200 0.513 0.607 0.515 0.380
Nominal (T) 1.064 0.887 0.352 0.455 0.359 0.311
Graded (T) 1.142 0.977 0.339 0.485 0.396 0.271
DIRT (0) 0.930 0.749 0.341 0.420 0.351 0.302
Nominal (0) 0.924 0.694 0.394 0.351 0.294 0.292
Graded (0) 0.990 0.796 0.306 0.410 0.331 0.235

Vocabulary Test
DIRT (T) 2.198 4.461 1.208 2.051 1.182 0.524
Nominal (T) 2.005 3.626 0.462 1.824 0.768 0.493
Graded (T) 2.205 3.143 0.905 1.747 0.360 0.791
DIRT (0) 1.976 3.746 0.597 1.896 0.929 0.461
Nominal (0) 1.875 3.375 0.601 1.667 0.749 0.627
Graded (0) 2.049 2.992 1.004 1.574 0.477 0.874

Note: Mean = mean equating, Linear = linear equating, Equipercentile = equipercentile equating, DIRT (T) =
dichotomous IRT true score equating, DIRT (0) = dichotomous IRT observed score equating, Nominal (T) =
nominal model true score equating, Nominal (0) = nominal model observed score equating, Graded (T) =
graded response model true score equating, Graded (0) = graded response model observed score equating
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FIGURE 1. Scree plots for tetrachoric correlation matrices based on individual item scores
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Difference Score Plot Using Mean Equating Equivalents as a Baseline
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FIGURE 3. Comparison of the dichotomous IRT true score equating method and
the nominal model and graded response model true score equating methods
using traditional equating methods as baselines for the reading comprehension tesI
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Difference Score Plot Using Mean Equating Equivalents as a Baseline
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FIGURE 4. Comparison of the dichotomous IRT observed score equating method
and the nominal model and graded response model observed score equating methods
using traditional equating methods as baselines for the reading comprehension test



Difference Score Plot Using Mean Equating Equivalents as a Baseline
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FIGURE 5. Comparison of the dichotomous IRT true score equating method and
the nominal model and graded response model true score equating methods using
traditional equating methods as baselines for the maps and diagrams test
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Difference Score Plot Using Mean Equating Equivalents as a Baseline
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FIGURE 6. Comparison of the dichotomous IRT observed score equating method and
the nominal model and graded response model observed score equating methods
using traditional equating methods as baselines for the maps and diagrams test
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Difference Score Plot Using Mean Equating Equivalents as a Baseline
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FIGURE 7. Comparison of the dichotomous IRT true score equating method and
the nominal model and graded response model true score equating methods using
traditional equating methods as baselines for the math problem solving and
data interpretation test
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Difference Score Plot Using Mean Equating Equivalents as a Baseline
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FIGURE 8. Comparison of the dichotomous IRT observed score equating method and
the nominal model and graded response model observed score equating methods
using traditional equating methods as baselines for the math problem solving and
data interpretation test
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Difference Score Plot Using Mean Equating Equivalents as a Baseline
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FIGURE 9. Comparison of the dichotomous IRT true score equating method and
the nominal model and graded response model true score equating methods using
traditional equating methods as baselines for the vocabulary test
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